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A simple, very accurate algorithm for numerical simulation of stochastic dif- 
ferential equations is described. Its relationship to colored noise is elucidated 
and exhibited by explicit results. The especially delicate problem of mean first 
passage times is highlighted and highly accurate agreement between the 
numerical simulations and analytic results are shown. 
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1, I N T R O D U C T I O N  

My interest in numerical simulation of stochastic differential equations 
arose during a collaboration with R. Roy which concerned the noise 
properties of dye lasers. ~1 4) These studies simultaneously involved the 
theory of multiplicative colored noise, measurements of noise charac- 
teristics in dye lasers, and numerical simulations of stochastic differential 
equations. By fitting certain noise parameters in the simulations, good 
agreement with the measurements could be obtained. However, this 
method was only as good as the simulations, and so we embarked on a 
study ~5~ of the accuracy of the then acceptable simulation algorithms. ~6'7) 
This study resulted in the simple, improved algorithm to which I will 
return later in this paper. 

Concurrently with the dye laser studies, I was also pursuing the study 
of the effects of colored noise on mean first passage times in bistability 
problemsJ 8) This problem was brought to my attention by Peter 
Hanggi, ~9'1~ with whom I have had a continuing dialogue on the subject. 
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1353 

0022-4715/89/0300-1353506.00/0 �9 1989 Plenum Publishing Corporation 



1354 Fox 

The literature on this subject has become diverse, confused, and conten- 
tious. Recently, I called for accurate numerical work (1t) in order to help 
bring clarity to the problem. Since no such accurate numerical study was 
forthcoming, I was compelled to engage in such studies myself. The 
preliminary results of these studies are reported below. 

2. C O L O R E D  NOISE A N D  BISTABIL ITY 

The prolem of bistability and colored noise may 
mathematical formulation 

be given the 

2= W ( x ) + f  (1) 

where W(x)= a x - b x  3 and f is "exponentially correlated" colored noise 
which is Gaussian, has zero mean, and satisfies 

( f ( t ) f ( s ) )  =Do2 exp( -2  I t - s l )  (2) 

in which D o is the noise strength and 2-1 is the colored noise correlation 
time. In the limit of a short correlation time, f goes over to white noise, fw, 
with correlation 

(fw(t) fw(S)) = 2Do~5(t - s) (3) 

The colored noise problem is non-Markovian, but for weakly colored noise 
an effective Fokker-Planck description is possible (8) which provides one 
with a theory for all the statistical properties of the system. This effective 
theory is one dimensional, the x dimension, and several approximate 
theories have been proposed for it. Three versions are briefly described 
below. 

All versions yield an effective Fokker-Planck equation of the form 

(~ (~2 
~?t P = --~x [W(x)P] +-~x 2 [D(x)P] (4) 

in which D(x) is the effective diffusion "constant" for weakly colored noise. 
In one version, (12} often called the "best Fokker-Planck equation," a 
perturbation expansion in 2-1 is used to yield 

D(x) = Do[1 + 2-1W'(x)] (5) 

in which W'(x) denotes the x derivative of W(x). Van Kampen has 
analyzed this procedure and has observed that it is asymptotic in ,~-1 
because D(x) becomes negative for sufficiently large Ix[ and fixed 2 -1. 
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Only as 2-1 goes to zero does D(x) remain positive for the whole domain 
of x, which is ( - ~ ,  ~ ) .  Another version, ~1~ called the "Hanggi ansatz," 
yields 

D(x)=Do[l+2-~(3b(x 2 ) - a ) ]  ~ (6) 

in which ( x  2) denotes the mean square value of x. This is a "mean-field" 
type of approximation. For it, D(x) is always positive. Using functional 
calculus, I found an essentially nonperturbative approach (s) to weakly 
colored noise which produced 

D(x)=Do[1-~ ~W'(x)] ' (7) 

which shows a clear relationship to both (5) and (6). However, it is not 
asymptotic in 2-~ and remains positive for fixed, but sufficiently small 2-1, 
throughout the entire x domain. Consequently, I called this a "uniform" 
approximation (for uniform positivity in x). 

The point of all this is that for weakly colored noise, the existence 
of an effective Fokker-Planck equation makes it possible to apply 
well-understood procedures for Markov processes to a weakly non-Markov 
process. 

On the other hand, it is also possible to reformulate the problem as a 
two-dimensional problem which is Markov for arbitrary noise coloring. 
This is done as follows: 

yc= W(x)+~ (8) 

= -2~ + 2gw (9) 

in which gw is Gaussian, white noise with zero mean and correlation 

(gw(t)  gw(S)) = 2Do6(t-s) (10) 

The driven process e has correlation 

{ (e(t)  e(s))  } = D o2 exp( - 2 I t -  sl) (11) 

just like in (2), except that here ( . . . )  refers to averaging over gw and {.-. } 
refers to averaging the initial value of e, i.e., e(0), over the stationary 
distribution for e(0), i.e., 

1 [ 1 e2(0)~ 
P(e(O))- (2~zD0,~)U2 exp 2 Do2 J (12) 

It is important to emphasize the necessity for this second averaging in (11) 
in order to get a stationary correlation. This feature is especially important 
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in the numerical simulations, where it has often been overlooked in the 
past. 

While Eqs. (8) and (9) describe a bona fide Markov process in two 
dimensions, the corresponding Fokker-Planck equation 

/ '  (13) 

is very difficult to analyze because of its dependence on two variables, x 
and e. This is the main reason so much effort went into finding effective 
Fokker-Planck equations in just one variable, x, even though these 
equations were still tough to analyze. 

One quantity is very sensitive to whether a one-dimensional or a two- 
dimensional approach is used. This quantity is the mean first passage time. 
Its sensitivity on dimension results from the necessity of introducing absor- 
bing boundaries in the calculation of the first passage time distribution. 
The boundary conditions in the two-dimensional formulation do not 
necessarily devolve into appropriate boundary conditions in the one- 
dimensional formulation. When they do not, the one-dimensional for- 
mulation is simply impotent when it comes to computing the mean first 
passage time. 

The rest of this paper is divided as follows. Section 3 reviews earlier 
work which resulted in a simple, accurate algorithm for numerical 
simulation of stochastic differential equations. Section 4 presents a mean 
first passage time problem which is simpler than that for the bistability case 
and which allows comparison of analytic expressions and numerical results. 
In Section 5, a brief account of the current situation with respect to the 
bistability problem is given as a guide to future efforts. 

3. N U M E R I C A L  S I M U L A T I O N S  

To test the accuracy of numerical simulation algorithms for colored 
noise, it is necessary to find a problem which can be solved analytically in 
closed form so that a comparison of theory with simulation can be quan- 
titative. The Kubo oscillator provides such a problem and we studied it in 
detail recently. (5) 

Let coo be a constant frequency and co be a stochastic, real frequency 
with a Gaussian distribution; zero mean, and correlation 

{(co(t) co(s))} =�89 e x p ( - 2  I t - s l )  (14) 

The Kubo oscillator equation can be written in terms of the time evolution 
for a complex variable a(t) which satisfies 

~i = i(coo + co)a (15) 
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where 

05 = -2CO + 2gw (16) 

in which gw is Gaussian, white noise with zero mean and correlation 

<gw(t) gw(S) > = Q a ( t - - s )  (17) 

( . . . >  denotes averaging with respect to gw, whereas {.. .} denotes 
averaging with respect to the initial values for co, co(0), in accord with the 
stationary distribution 

1 [ co(0)21 
P(CO(0))- (=Q2)1/2 exp ~ j (18) 

Note the difference in factors of 2 between Eqs. (2) and (3) and Eqs. (14) 
and (17). This apparent inconsistency only represents a difference in con- 
vention, which is represented in the literature by roughly equal usages of 
each choice. By using both choices in one paper, I hope the reader will 
watch "like a hawk" the appearance of factors of 2, and thereby learn to 
avoid one of the simpler sources of error. 

The variable a can be equally well represented by two real variables, r 
and ~b through 

a = re ir (19) 

When this is done, ~b satisfies an "additive" stochastic differential equation 
instead of the "multiplicative" equation (15), and r is a constant. The exact 
equation for the probability distribution for ~b is 

6~ 0 2 
0 p = -COo p Ot - ~  + D ( t ) - ~  P (20) 

where P(~, 0) = 6(~ - ~bo), and 

D(t )= �89  - e  -~v') (21) 

This is not a Fokker-Planck equation, because qt is not a Markov process, 
and P does not satisfy the Chapman-Kolmogorov equation. Nevertheless, 
P(~b, 0) does provide a great deal of statistical information about ~b. In fact, 
PQb, t) can be obtained in closed form: 

exp[i, im o,moo, m2  sO(s,] ,22, 
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With this solution, we were able to compute exact expressions (5) for (~b), 
(&b 2) = ( ( ~ b - ( ~ b ) ) 2 ) ,  and (AqJ3)/(A02) 3/2 a s  functions of time. The 
reader is referred to ref. 5 for figures which show these results for several 
choices of the parameters Q and 2. (In fact, in all of the figures, co o = 1, 
~bo = 45 ~ and the time axis is given in units of real time/2rc. This last fact 
was inadvertently unstated in ref. 5 and must be noted if one attempts to 
reproduce our results.) In addition to these exact results, which are plotted 
as smooth, continuous curves in the figures, there are numerous small 
boxes superimposed on the curves and exhibiting the results of numerical 
simulation. The agreement is clearly excellent. 

The following points are worth emphasis: 

1. We used the Box-Mueller  algorithm (13) to generate Gaussian 
random variables from uniform random variables. That  is, to get gw, we 
wrote 

a = RND(1)  

b = RND(1)  

gw = S Q R ( -  2 * Q ' t *  LOG(a) )*  cos(2~*b) 

(23) 

in which t denotes the integration step size, which was kept constant 
throughout the simulation. To get the distribution for initial values of o), 
o)(0), we used 

m = RND(1)  

n = RND(1 ) (24) 

o)(0) = SQR( - Q*2* LOG(m))*  cos(2zt*n) 

This second use of Box-Mueller  was essential for accurate results! 

2. We treated the coupled pair of equations (15) and (16) as three 
coupled equations in three real variables, e), x, and y, where a = x + iy .  The 
simulation algorithm we have developed regards x, y, and co as ordinary 
variables everywhere in the simulation program except for just one line, the 
line in which gw influences co. To be explicit, the essential features of such a 
program are given below for a Runge-Kutta-2 program: 

m = RND(1)  

n = RND(1 ) 

co o = SQR( - Q*2* LOG(m))*  cos(2zc*n) 

(25) 
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a = RND(1) 

b = RND(1) (26) 

gw = SQR(-2*Q*t*  LOG(a))* cos(2~*b) 

j l  = t * ( -  (coo + coO)* y0) 

k 1 = t*((coo + co0)* x0) (27) 

h l  = t*(-2*co0) 

j2  = t*(- (coo + coO + h l ) )* ( y 0 + k l )  

k2 = t*((coo + coO + h 1)* (xO + j2)) (28) 

h 2 =  t*(-2*(coO + h l )) 

x l = x O +  l ( j l  + j 2 )  

y l  = yO+�89 + k 2 )  (29) 

col =coO+ �89 + h 2 )  + 2*gw 

x O = x l  

y 0 = y l  (30) 

coO=~ol 

At the end of this sequence, the program loops back to (25) and repeats. 
Note that in each line of (27) and (28) the step size t appears to the first 
power, whereas in the last line of (29) it also appears as a square root in 
gw, as follows from the last line of (26). 

3. One can also write down an Euler version of this program, which 
is of course shorter. However, a shorter step size is required in order to 
achieve comparable accuracy. One must always check that the exponential 
decay implicit in Eq. (16) is in fact accurately simulated, since it can 
already provide error. Thus, Runge-Kutta-2 or even Runge-Kutta-4 is 
preferable. 

4. A very useful insight gained from these studies is that "weakly" 
colored noise is essentially white noise. This means that a simulation of 
colored noise with 2 ~ sufficiently small is effectively a white noise 
simulation. This perspective is precisely the viewpoint of Stratonovich in 
his version of the so-called Ito stochastic calculus. (~4~ It is the reason why 
everything presented in this paper has been in the Stratonovich version. 
What constitutes "sufficiently small 2-1,, is determined by the secular time 
scales in the problem. For example, in the Kubo oscillator simulation, the 
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time scale is set by the period of oscillation, 2n/co o, which is just 2n for 
(n o = 1. A look at the figures in ref. 5 shows that the figures for a directly 
white noise algorithm (Figs. 10-12) are indistinguishable from the figures 
for the weakly colored algorithm (Figs. 7-9), which were obtained for 
2= 10 ,  i.e., for 2 -1=0 .1 .  This means that when the colored noise 
correlation time is approximately 63 times smaller than the period of 
secular oscillation, we have effectively white noise. Now, as far as ~b is 
concerned, these six figures show indistinguishable results, but this is not 
the case for r, as is discussed in the next point. 

5. The quantity r is supposed to remain constant according to (15) 
and (19). Using initial conditions for which r = 1, Fig. 15 of ref. 5 shows 
that the weakly colored noise algorithm (2=  10) satisfies this constraint. 
The figure shows the result of ten full periods of time evolution and no 
observable deviation from r = 1. On the other hand, the direct white noise 
algorithm, which does so well for ~b, as exhibited in Figs. 10-12, does not 
preserve r for a time step identical with that used in Fig. 15. This is shown 
in Figs. 13 and 14 of ref. 5. How can this be? The answer has to do with 
dependence on step size in the respective algorithms. For the direct white 
noise algorithm, the program which replaces the colored noise algorithm 
given above in Eqs. (23)-(30) is 

a = RND(1 ) 

b = R N D ( 1 )  (31) 

gw = S Q R ( - 2 * Q ' t *  LOG(a))*  cos(2n*b) 

j l  = t*(-COo + y0  ) (32) 

k l  = t*(~o o + x0)  

j 2  = t * ( - c o ~ ( y O  + k l ) ) (33) 

k 2  = t * ( o ~ ( x O  + j l ) )  

x l  = x 0 + � 8 9  gw (34) 

y l  = y 0 +  �89 + k 2 ) +  gw 

x 0 = x l  
(35) 

y 0 = y l  

The crucial difference is between lines (29) and lines (34). In lines (29), x l  
and y l  contain terms of order t, whereas in lines (34) they also contain 
terms of order tl/2>> t, through gw- Since these lines do not conserve r = 
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x 2 + y2 exactly, the error in (34) is larger than in (29) for identical step size. 
As shown in Fig. 13 of ref. 5, the step size which preserves r = 1 for ten 
periods with the colored noise algorithm (Fig. 15) almost completely 
destroys r after ten periods with the direct white noise algorithm. Thus, for 
fixed step size, the weakly colored noise algorithm is a more accurate 
method than the direct white noise algorithm. Various alternative 
algorithms which introduce gw into lines (32) and (33) instead of into (34) 
do not change these results in any significant way. 

We are now in a position to attempt accurate numerical simulations of 
mean first passage times. 

4. F IRST P A S S A G E  T I M E S  

Because closed-form analytic results for the first passage time dis- 
tribution in the bistability problem do not exist, we looked for a problem 
for which closed-form expressions did exist. The simplest possibility is a 
colored-noise Brownian motion, or random walk, described by the 
equations 

:~=~ (36) 

i = -25 + 2gw (37) 

in which gw is Gaussian, white noise with zero mean and correlation 

(gw(t) gw(S) > = 2D6(t- s) (38) 

These equations imply that ~ is also Gaussian with zero mean and 
correlation 

{ (~(t) e(s)) } = D2 e x p ( - 2  t - s[) (39) 

where {--. } refers to averaging over the initial values of e, 8(0), which are 
distributed by the Gaussian, stationary distribution 

1 ~(0} 2] 
P e q ( { ; ( 0 ) )  - -  (271:D2)1/2 exp [ 2--D-2-J (40) 

The tractability of this problem has the virtue that we can look at 
both its two-dimensional representation and its reduced, one-dimensional 
representation. Using van Kampen's lemma, (15'16) we obtain directly from 
(36) and (39) the probability distribution evolution equation in one dimen- 
sion: 

{32 
8-'P(x'st t) : D(1 -e-a')-~Sx2P(x, t) (41) 
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This is not a Fokker-Planck equation, in parallel with the situation for 
Eq. (20). Using van Kampen's lemma again, Eqs. (36)-(38) imply the bona 
fide, two-dimensional Fokker-Planck equation 

if(x, e, t )=  --~-s [eP(x, e, t)] +~-ss 2e + D22 /5(x, e, t) (42) 

These two equations are related in another way as well. If the initial 
distribution P(x, e, 0) is written 

P(x, e, O) = P(x, O) Peq(e) (43) 

and we introduce differential operators L and K defined by 

L= ~e 

K=N 

then we can prove that 

(44) 

(45) 

i 
oO 

P(x,  t) -- de exp[t(L + K)] P(x, 0) Peq03) 
- - o o  

(46) 

satisfies Eq. (41). That is, the contraction of/5(x, e, t) over s yields P(x, t). 
This identity follows from the commutator algebra for L and K, which may 
be summarized by 

[K, .]2, L = (_,~)2, L (47) 

[X, .]2n-i L =  ( - 2 )  z"- '  E+ 2 D 2 ~  (48) 

These results suggest that Eq. (41) provides an exact reduction of Eq. (42) 
and that the statistics for x alone are completely accounted for by P(x, t). 

The last remark was checked by comparing the prediction of Eq. (41) 
for the mean square deviation in x, Ax  = x - X o ,  for a time interval t: 

(Ax e ) = 2 D [ t + 2 - ~ ( e  - ~ ' -  1)] (49) 

with numerical simulations of Eqs. (36)-(38) done with a program of the 
type described in Eqs. (25)-(30). Using a step size of 10 -6, D values of 0.5, 
1, and 10, and 2 -1 values of 0.01 and 0.001 in various combinations, 
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accuracy of 0.1% is obtained! This clearly confirms both our theoretical 
perspective and our numerical algorithm. 

The situation for the mean first passage time is much different. To 
analytically solve a mean first passage time problem, one must first find a 
solution for the first passage time distribution which satisfies the so-called 
backward equation ~7'1.) associated with the forward equation [.either 
Eq.(41) or (42) in this case] with absorbing boundary conditions. 
Specifically, if x starts at x = L ,  and we seek the first passage time 
distribution for x arriving at either 0 or at 2L for the first time, and then 
the backward equation associated with Eq. (41) is 

0 e_;.,) 3 2 
0 t O = D ( 1 -  ~x2Q (50) 

with absorbing boundaries at 0 and 2L. This problem can be solved in 
closed form ~9~ and we get 

Q(x', t; x, O) = {exp[ 'x 
[47rD(t)] ~/2 ,= -oo 4 - ~  ] 

[ (x'+x+41L)2q  
- e x p / -  JJ (51) 

where D ( t ) = D ( t + 2 - 1 ( e - ; " - l ) )  and x ~ [ 0 , 2 L ] .  Q = 0  for x = 0  and 
x = 2L is manifest. The mean first passage time to reach these boundaries 
from any initial point x e [0, 2L] is denoted by T(x) and is given by (17) 

T(x) = dt dx' Q(x', t; x, 0) (52) 

Starting from the middle of the interval, a lengthy calculation yields 

L2 ~ mm- le-m 
T(L) = 2-D + 2 - ~  m! 

m = l  

2 } (53) 
x 1 exp[(m/D2-1)l /2L] +exp [ - ( m / D 2 - i ) I / 2 L ]  

This formula has a leading term, L2/2D, which is the well-known white 
noise result, which can readily be confirmed by numerical simulation. In 
addition, there are two 2-1 corrections, one by itself and one involving an 
infinite summation. It is relatively easy to evaluate this formula 
numerically, although some care must be exercised in evaluating the sum- 
mation over m. Having said all this, and using parameter values and step 
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sizes for which Eq. (49) was verified to better than 0.1%, repeated 
numerical simulations for colored noise failed to confirm (53)!! Only in the 
white noise limit of weakly colored noise did agreement occur. What has 
gone wrong? 

The answer to this plea is a bit subtle. It requires looking at the first 
passage time problem in the two-dimensional context of Eq. (42). When 
formulated in two dimensions, approximate boundary conditions in two 
dimensions are required. If we work with the backward equation associated 
with Eq. (42), these boundary conditions are that there are absorbing 
boundaries in the x-e plane. One boundary is at x = 2L and extends along 
the a axis from e = 0 to ~ = oo. The negative half of this line, i.e., from ~ = 0 
to e-- - ~  is not included. This is because the arrival of x at x = 2L for the 
first time must have e >t 0 since 2 = e. Similarly, the other boundary is at 
x = 0 and extends along the e axis from e = 0 to e = - o o  because the first 
arrival at x = 0 requires that 2 = e ~< 0. These boundary conditions in the 
x-e plane are not preserved by the boundary conditions imposed on 
Eq. (50) for the reduced, one-dimensional description because the reduced 
description involved integration over e from - o o  to oo, as is explicitly seen 
in Eq. (46). Thus, the boundary conditions needed for a first passage time 
calculation do not contract along with the contraction of the forward 
equation for the probability distribution. One is obliged to stay in the 
higher-dimensional picture in order to get mean first passage times. 

Obviously, we should now proceed to solve the backward equation 
obtained from Eq. (42) with the boundary conditions described above and 
then compute the mean first passage time for comparison With the 
numerical Simulations. This is not an easy task! In fact, no one has been 
able to do this with full generality. However, certain asymptotic results 
have recently been reported (2~ which yield a formula which I have been 
able to check and confirm. These results actually involve solving the 
forward equation, Eq. (42), with appropriate associated boundary con- 
ditions, rather than the backward equations. Under certain conditions, 
satisfied in this case, although not generally, it is possible to use the 
forward equation to obtain first passage time results. Haganetai. ~2~ 
obtained 

to within a transcendentally small error of order e x p [ -  L(D2--1)- 1/2], i.e., 
provided D2-1 ~ L 2. Here ~(1/2) is the Riemann zeta function evaluated at 
1/2 and has the value -1.46035 .... and ~c has the value 0.2274981 .... I have 
confirmed this prediction with numerical simulations for eight sets of 
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T a b l e  I 

L D 2 -1 At T e x p [ - L / ( D 2 - 1 )  1/2] Sim Er  Its 

0,05 1.0 10 s 10 6 1.489 x 10 -3 1.35 x 10 7 1.480 x 10 -3 1.0046 4580 

0.01 1.0 I0 -5 10 -6  1,041 x 10 4 4.2 ) 10 - 2  1.048X 10 -4 1.023 5000 

0.05 5.0 10 - s  10 -6 3,612X t0  4 8,49X 10-4  3.588X 10 -4 1.010 5000 

0,08 12.0 2 X 10 -5 10 -6 4,334 X 10 -4 5.7 X 10 .3  4,332 X 10-4  1.0069 5000 

0.05 10.0 10 5 10 -6 2.060 X 10 .4  6.7 X 10 3 2.099 X 10 -4 1.0143 5000 

0.2 10.0 10 .5  10 -6 2,300 X 10 .3  2.0 X 10 -9 2,291 X i0 -3 1.0036 5000 

0.1 10.0 10 4 10 -6 1.041 • 10 -3 4.23 x 10 -2 1.037 • 10 -3 1.0023 5000 

0.1 10.0 5 x l O  5 10-6  8 . 6 6 x 1 0  4 1 . 1 4 x 1 0 - 2  8 . 6 2 x 1 0  -4  1.0032 3136 

parameter values, to better than 1% in each instance. The results are 
tabulated in Table I. In Table I, the symbols L, D and ,I-1 are defined as in 
the text, and T denotes formula (54). At denotes the step size used in the 
numerical simulations, the results of which appear in the column labeled 
Sire. When these simulations are run, the position x always exceeds L by 
some small amounts which depend on L and D. This excess is measured by 
the quantity given in the column labeled Er, which records the average 
excess for the total number of iterations run, the number recorded in the 
last column. 

5. BISTABILITY 

We are now in a position to engage in numerical simulations for mean 
first passage times in a double-well potential, i.e., bistability. Several 
attempts (21-23) at analytic results have already been proposed for various 
parameter domains, within the two-dimensional context. One attempt (2I) 
utilizes a matrix continued fraction approach to the solution of the two- 
dimensional Fokker-Planck equation and computes the smallest eigen- 
value, the reciprocal of which is related to the mean first passage time. The 
value of this eigenvalue depends upon the boundary conditions in the 
two-dimensional representation space. Another approach ~23) involves 
asymptotic methods and a direct solution of the two-dimensional mean 
first passage time equation, with appropriate boundary conditions. 
Numerical simulations can now bring clarity to these efforts. 
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